Electromyography (EMG) is a technique used to record and analyze the electrical activity of muscles.
Mobile manipulators in the home can enable people with cervical spinal cord injury (cSCI) to perform daily physical household tasks that they could not otherwise do themselves. However, paralysis in these users often limits access to traditional robot control interfaces such as joysticks or keyboards. In this work, we introduce and deploy the first system that enables a user with quadriplegia to control a mobile manipulator in their own home using bimanual high-density electromyography (HDEMG). We develop a pair of custom, fabric-integrated HDEMG forearm sleeves, worn on both arms, that capture residual neuromotor activity from clinically paralyzed degrees of freedom and support real-time gesture-based robot control. Second, by integrating vision, language, and motion planning modules, we introduce a shared autonomy framework that supports robust and user-driven teleoperation, with particular benefits for navigation-intensive tasks in home environments. Finally, to demonstrate the system in the wild, we present a twelve-day in-home user study evaluating real-time use of the wearable EMG interface for daily robot control. Together, these system components enable effective robot control for performing activities of daily living and other household tasks in a real home environment.
Surface electromyography (sEMG) is a promising control signal for assist-as-needed hand rehabilitation after stroke, but detecting intent from paretic muscles often requires lengthy, subject-specific calibration and remains brittle to variability. We propose a healthy-to-stroke adaptation pipeline that initializes an intent detector from a model pretrained on large-scale able-bodied sEMG, then fine-tunes it for each stroke participant using only a small amount of subject-specific data. Using a newly collected dataset from three individuals with chronic stroke, we compare adaptation strategies (head-only tuning, parameter-efficient LoRA adapters, and full end-to-end fine-tuning) and evaluate on held-out test sets that include realistic distribution shifts such as within-session drift, posture changes, and armband repositioning. Across conditions, healthy-pretrained adaptation consistently improves stroke intent detection relative to both zero-shot transfer and stroke-only training under the same data budget; the best adaptation methods improve average transition accuracy from 0.42 to 0.61 and raw accuracy from 0.69 to 0.78. These results suggest that transferring a reusable healthy-domain EMG representation can reduce calibration burden while improving robustness for real-time post-stroke intent detection.
This paper presents a novel neuromorphic control architecture for upper-limb prostheses that combines surface electromyography (sEMG) with gaze-guided computer vision. The system uses a spiking neural network deployed on the neuromorphic processor AltAi to classify EMG patterns in real time while an eye-tracking headset and scene camera identify the object within the user's focus. In our prototype, the same EMG recognition model that was originally developed for a conventional GPU is deployed as a spiking network on AltAi, achieving comparable accuracy while operating in a sub-watt power regime, which enables a lightweight, wearable implementation. For six distinct functional gestures recorded from upper-limb amputees, the system achieves robust recognition performance comparable to state-of-the-art myoelectric interfaces. When the vision pipeline restricts the decision space to three context-appropriate gestures for the currently viewed object, recognition accuracy increases to roughly 95% while excluding unsafe, object-inappropriate grasps. These results indicate that the proposed neuromorphic, context-aware controller can provide energy-efficient and reliable prosthesis control and has the potential to improve safety and usability in everyday activities for people with upper-limb amputation.
Consumer-grade biosensors offer a cost-effective alternative to medical-grade electromyography (EMG) systems, reducing hardware costs from thousands of dollars to approximately $13. However, these low-cost sensors introduce significant signal instability and motion artifacts. Deploying machine learning models on resource-constrained edge devices like the ESP32 presents a challenge: balancing classification accuracy with strict latency (<100ms) and memory (<320KB) constraints. Using a single-subject dataset comprising 1,540 seconds of raw data (1.54M data points, segmented into ~1,300 one-second windows), I evaluate 18 model architectures, ranging from statistical heuristics to deep transfer learning (ResNet50) and custom hybrid networks (MaxCRNN). While my custom "MaxCRNN" (Inception + Bi-LSTM + Attention) achieved the highest safety (99% Precision) and robustness, I identify Random Forest (74% accuracy) as the Pareto-optimal solution for embedded control on legacy microcontrollers. I demonstrate that reliable, low-latency EMG control is feasible on commodity hardware, with Deep Learning offering a path to near-perfect reliability on modern Edge AI accelerators.
Reliable long-term decoding of surface electromyography (EMG) is hindered by signal drift caused by electrode shifts, muscle fatigue, and posture changes. While state-of-the-art models achieve high intra-session accuracy, their performance often degrades sharply. Existing solutions typically demand large datasets or high-compute pipelines that are impractical for energy-efficient wearables. We propose a lightweight framework for Test-Time Adaptation (TTA) using a Temporal Convolutional Network (TCN) backbone. We introduce three deployment-ready strategies: (i) causal adaptive batch normalization for real-time statistical alignment; (ii) a Gaussian Mixture Model (GMM) alignment with experience replay to prevent forgetting; and (iii) meta-learning for rapid, few-shot calibration. Evaluated on the NinaPro DB6 multi-session dataset, our framework significantly bridges the inter-session accuracy gap with minimal overhead. Our results show that experience-replay updates yield superior stability under limited data, while meta-learning achieves competitive performance in one- and two-shot regimes using only a fraction of the data required by current benchmarks. This work establishes a path toward robust, "plug-and-play" myoelectric control for long-term prosthetic use.
This work presents the design and implementation of a wireless, wearable system that combines surface electromyography (sEMG) and inertial measurement units (IMUs) to analyze a single lower-limb functional task: the free bodyweight squat in a healthy adult. The system records bipolar EMG from one agonist and one antagonist muscle of the dominant leg (vastus lateralis and semitendinosus) while simultaneously estimating knee joint angle, angular velocity, and angular acceleration using two MPU6050 IMUs. A custom dual-channel EMG front end with differential instrumentation preamplification, analog filtering (5-500 Hz band-pass and 60 Hz notch), high final gain, and rectified-integrated output was implemented on a compact 10 cm x 12 cm PCB. Data are digitized by an ESP32 microcontroller and transmitted wirelessly via ESP-NOW to a second ESP32 connected to a PC. A Python-based graphical user interface (GUI) displays EMG and kinematic signals in real time, manages subject metadata, and exports a summary of each session to Excel. The complete system is battery-powered to reduce electrical risk during human use. The resulting prototype demonstrates the feasibility of low-cost, portable EMG-IMU instrumentation for integrated analysis of muscle activation and squat kinematics and provides a platform for future biomechanical applications in sports performance and rehabilitation.
Gestures are an integral part of our daily interactions with the environment. Hand gesture recognition (HGR) is the process of interpreting human intent through various input modalities, such as visual data (images and videos) and bio-signals. Bio-signals are widely used in HGR due to their ability to be captured non-invasively via sensors placed on the arm. Among these, surface electromyography (sEMG), which measures the electrical activity of muscles, is the most extensively studied modality. However, less-explored alternatives such as inertial measurement units (IMUs) can provide complementary information on subtle muscle movements, which makes them valuable for gesture recognition. In this study, we investigate the potential of using IMU signals from different muscle groups to capture user intent. Our results demonstrate that IMU signals contain sufficient information to serve as the sole input sensor for static gesture recognition. Moreover, we compare different muscle groups and check the quality of pattern recognition on individual muscle groups. We further found that tendon-induced micro-movement captured by IMUs is a major contributor to static gesture recognition. We believe that leveraging muscle micro-movement information can enhance the usability of prosthetic arms for amputees. This approach also offers new possibilities for hand gesture recognition in fields such as robotics, teleoperation, sign language interpretation, and beyond.
Brain-computer interface (BCI) speech decoding has emerged as a promising tool for assisting individuals with speech impairments. In this context, the integration of electroencephalography (EEG) and electromyography (EMG) signals offers strong potential for enhancing decoding performance. Mandarin tone classification presents particular challenges, as tonal variations convey distinct meanings even when phonemes remain identical. In this study, we propose a novel cross-subject multimodal BCI decoding framework that fuses EEG and EMG signals to classify four Mandarin tones under both audible and silent speech conditions. Inspired by the cooperative mechanisms of neural and muscular systems in speech production, our neural decoding architecture combines spatial-temporal feature extraction branches with a cross-attention fusion mechanism, enabling informative interaction between modalities. We further incorporate domain-adversarial training to improve cross-subject generalization. We collected 4,800 EEG trials and 4,800 EMG trials from 10 participants using only twenty EEG and five EMG channels, demonstrating the feasibility of minimal-channel decoding. Despite employing lightweight modules, our model outperforms state-of-the-art baselines across all conditions, achieving average classification accuracies of 87.83% for audible speech and 88.08% for silent speech. In cross-subject evaluations, it still maintains strong performance with accuracies of 83.27% and 85.10% for audible and silent speech, respectively. We further conduct ablation studies to validate the effectiveness of each component. Our findings suggest that tone-level decoding with minimal EEG-EMG channels is feasible and potentially generalizable across subjects, contributing to the development of practical BCI applications.




The current body of research on Parkinson's disease (PD) screening, monitoring, and management has evolved along two largely independent trajectories. The first research community focuses on multimodal sensing of PD-related biomarkers using noninvasive technologies such as inertial measurement units (IMUs), force/pressure insoles, electromyography (EMG), electroencephalography (EEG), speech and acoustic analysis, and RGB/RGB-D motion capture systems. These studies emphasize data acquisition, feature extraction, and machine learning-based classification for PD screening, diagnosis, and disease progression modeling. In parallel, a second research community has concentrated on robotic intervention and rehabilitation, employing socially assistive robots (SARs), robot-assisted rehabilitation (RAR) systems, and virtual reality (VR)-integrated robotic platforms for improving motor and cognitive function, enhancing social engagement, and supporting caregivers. Despite the complementary goals of these two domains, their methodological and technological integration remains limited, with minimal data-level or decision-level coupling between the two. With the advent of advanced artificial intelligence (AI), including large language models (LLMs), agentic AI systems, a unique opportunity now exists to unify these research streams. We envision a closed-loop sensor-AI-robot framework in which multimodal sensing continuously guides the interaction between the patient, caregiver, humanoid robot (and physician) through AI agents that are powered by a multitude of AI models such as robotic and wearables foundation models, LLM-based reasoning, reinforcement learning, and continual learning. Such closed-loop system enables personalized, explainable, and context-aware intervention, forming the basis for digital twin of the PD patient that can adapt over time to deliver intelligent, patient-centered PD care.
Brain-to-speech (BTS) systems represent a groundbreaking approach to human communication by enabling the direct transformation of neural activity into linguistic expressions. While recent non-invasive BTS studies have largely focused on decoding predefined words or sentences, achieving open-vocabulary neural communication comparable to natural human interaction requires decoding unconstrained speech. Additionally, effectively integrating diverse signals derived from speech is crucial for developing personalized and adaptive neural communication and rehabilitation solutions for patients. This study investigates the potential of speech synthesis for previously unseen sentences across various speech modes by leveraging phoneme-level information extracted from high-density electroencephalography (EEG) signals, both independently and in conjunction with electromyography (EMG) signals. Furthermore, we examine the properties affecting phoneme decoding accuracy during sentence reconstruction and offer neurophysiological insights to further enhance EEG decoding for more effective neural communication solutions. Our findings underscore the feasibility of biosignal-based sentence-level speech synthesis for reconstructing unseen sentences, highlighting a significant step toward developing open-vocabulary neural communication systems adapted to diverse patient needs and conditions. Additionally, this study provides meaningful insights into the development of communication and rehabilitation solutions utilizing EEG-based decoding technologies.